Mark Scheme Q1.

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$	
(a)	seen	B1
	$3x^{3}v^{2}\left(v + x\frac{dv}{dx}\right) = x^{3} + v^{3}x^{3} \qquad \Rightarrow \qquad 3v^{2}x\frac{dv}{dx} = 1 - 2v^{3}$ (**ag**)	M1 A1 eso
1250	$\int \frac{3v^2}{1-2v^3} \mathrm{d}v = \int \frac{1}{x} \mathrm{d}x$	
(b)	$\int \frac{1}{1-2v^3} \mathrm{d}v = \int \frac{1}{x} \mathrm{d}x$	M1
	$-\frac{1}{2}\ln(1-2v^3) = \ln x \ (+C)$ $-\ln(1-2v^3) = \ln x^2 + \ln A$	M1 A1
		M1
	$Ax^2 = \frac{1}{1 - 2v^3}$	M1
	$1 - \frac{2y^3}{x^3} = \frac{1}{Ax^2}$	
	$y = \sqrt[3]{\frac{x^3 - Bx}{2}}$ or equivalent	dM1 A1cso
		(6
(c)	Using $y = 2$ at $x = 1$: $12 \frac{dy}{dx} = 1 + 8$	M1
	At $x = 1$, $\frac{dy}{dx} = \frac{3}{4}$	A1
		(2
	Notes	,
(a)	M1 for substituting y and $\frac{dy}{dx}$ obtaining an expression in v and x only	
(b)	1 st M1 for separating variables 2 nd M1 for attempting to integrate both sides 1 st A1both sides required or equivalent expressions. (Modulus not	
	required.) 3 rd M1 Removing logs, dealing correctly with constant	
	4 th M1 dep on 1st M. Substitute $v = \frac{y}{x}$ and rearranging to $y = f(x)$	
(c)	M1 for finding a numerical value for $\frac{dy}{dx}$	
	A1 for correct numerical answer oe.	

Question Number	Sch	Scheme	
rumoer	Wa	Way 1	
(a)	$v = y^{-3} \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}y} = -3y^{-4}$	Correct derivative	B1
	$\frac{dy}{dx} = \frac{dy}{dx} \frac{dv}{dx} = -\frac{y^4}{2} \frac{dv}{dx}$	M1: Correct use of the chain rule	
	$\frac{dx}{dx} = \frac{1}{dx} \frac{dy}{dx} = \frac{1}{3} \frac{dx}{dx}$ Or $-3y^{-4} \frac{dy}{dx} x - 3y^{-3} = -6x^4$	A1: Correct equation	M1A1
	$-\frac{y^4}{3}\frac{dv}{dx}x + y = 2x^4y^4$		
	$-\frac{y^4}{3}\frac{dv}{dx}x + y = 2x^4y^4 \Rightarrow \frac{dv}{dx} - \frac{3v}{x} = -6x$	dM1: Substitutes to obtain an equation in v and x. A1: Correct completion with no errors seen	dM1A1
5	Wa	ny 2	
	$y = v^{-\frac{1}{3}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}v} = -\frac{1}{3}v^{-\frac{4}{3}}$	Correct derivative	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}v} \frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{1}{3}v^{-\frac{4}{3}} \frac{\mathrm{d}v}{\mathrm{d}x}$	M1: Correct use of the chain rule	M1A1
	dx dv dx 3 dx	A1: Correct equation	MIM
	$-\frac{v^{-\frac{4}{3}}}{3}\frac{dv}{dx}x + v^{-\frac{1}{3}} = 2x^4v^{-\frac{4}{3}}$	dM1: Substitutes to obtain an equation in v and x.	dM1
	$-\frac{v^{-\frac{4}{3}}}{3}\frac{dv}{dx}x + v^{-\frac{1}{3}} = 2x^4v^{-\frac{4}{3}} \Rightarrow \frac{dv}{dx} - \frac{3v}{x} = -\frac{3v}{x}$	A1: Correct completion with no errors seen	A1
2	Way 3 (Work	ing in reverse)	-
	$v = y^{-3} \Rightarrow \frac{dv}{dy} = -3y^{-4}$ $\frac{dv}{dy} = \frac{dv}{dy} = -3y^{-4} \frac{dy}{dy}$	B1: Correct derivative	B1
- 5	$\frac{dv}{dx} = \frac{dv}{dy} = -3v^{-4} \frac{dy}{dy}$	M1: Correct use of chain rule	M1A1
	dx dy dx dx	A1: Correct expression for dv/dx	WIIAI
	$-3y^{-4}\frac{dy}{dx} - \frac{3y^{-3}}{x} = -6x^3$	M1: Substitutes correctly for $\frac{dv}{dx}$ and v in equation (II) to obtain a D.E. in terms of x and y only. A1: Correct completion to obtain equation (I) with no errors seen	dM1A1

Question Number	Scheme		Marks
(b)	$I = e^{\int \frac{3}{x} dx} = e^{-3 \ln x} = \frac{1}{x^3}$	M1: $e^{\int \frac{x^3}{x} dx}$ and attempt integration. If not correct, $\ln x$ must be seen. A1: $\frac{1}{x^3}$	M1A1
	$\frac{v}{x^3} = \int -6 \mathrm{d}x = -6x \left(+c \right)$	M1: $v \times \text{their } I = \int -6x^3 \times \text{their } I dx$ A1: Correct equation with or without + c	dM1A1
	$\frac{1}{y^3 x^3} = -6x + c \Rightarrow y^3 = \dots$	Include the constant, then substitute for y and attempt to rearrange to $y^3 =$ or $y =$ with the constant treated correctly	ddM1 dep on both M marks of (b)
	$y^3 = \frac{1}{cx^3 - 6x^4}$	Or equivalent	A1 (6) Total 11

Q3.

Scheme	Notes	Marks
	Ls	
If candidates appear to be considering an attempt to review.	y/all of p , q , r to be non-positive, send the	
By use of integrating factor:		Y .
$\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{q}{p}x = \frac{r}{p}$		
$e^{\int \frac{q}{p} dt} = e^{\frac{qt}{p}}$		
$xe^{\frac{qt}{p}} = \int \frac{r}{p} e^{\frac{qt}{p}} dt$	Obtain IF $e^{\pm \int \frac{q}{p} dt} = e^{\pm \frac{qt}{p}}$, multiply through by it and integrate LHS. Accept $\int re^{\pm \frac{qt}{p}} dt$ for RHS	MI
$xe^{\frac{qt}{p}} = \frac{r}{q}e^{\frac{qt}{p}}(+c)$	Integrate RHS $e^{\frac{qt}{p}} \rightarrow ke^{\frac{qt}{p}}$. Constant of integration may be missing. Dependent on the first M mark.	dM1
$t = 0, x = 0, c = -\frac{r}{q}$	Substitute $x = 0$ and $t = 0$ to obtain c . Dependent on both M marks above.	ddM1
$xe^{\frac{qt}{p}} = \frac{r}{q}e^{\frac{qt}{p}} - \frac{r}{q}$		
$x = \frac{r}{q} - \frac{r}{q}e^{-\frac{q}{p}t}$	oe Change to $x =$	Al
	If candidates appear to be considering an attempt to review. By use of integrating factor: $\frac{dx}{dt} + \frac{q}{p}x = \frac{r}{p}$ $e^{\int_{p}^{q} dt} = e^{\frac{qt}{p}}$ $xe^{\frac{qt}{p}} = \int_{p}^{r} e^{\frac{qt}{p}} dt$ $xe^{\frac{qt}{p}} = \frac{r}{q}e^{\frac{qt}{p}}(+c)$ $t = 0, x = 0, c = -\frac{r}{q}$	If candidates appear to be considering any/all of p , q , r to be non-positive, send the attempt to review. By use of integrating factor: $\frac{dx}{dt} + \frac{q}{p} x = \frac{r}{p}$ $xe^{\frac{qt}{p}} = \int \frac{r}{p}e^{\frac{qt}{p}} dt$ Obtain IF $e^{\frac{t}{p}\frac{q}{p}dt} = e^{\frac{t}{p}}$, multiply through by it and integrate LHS. Accept $\int re^{\frac{t}{p}}dt$ for RHS $xe^{\frac{qt}{p}} = \frac{r}{q}e^{\frac{qt}{p}}(+c)$ Integrate RHS $e^{\frac{qt}{p}} \to ke^{\frac{qt}{p}}$. Constant of integration may be missing. Dependent on the first M mark. $t = 0, x = 0, c = -\frac{r}{q}$ Substitute $x = 0$ and $t = 0$ to obtain c . Dependent on both M marks above.

ALT:	By separating the variables:		5X 15
(i) (a)	$\int \frac{p dx}{r - qx} = \int dt$	Attempt to separate variables	MI
	$-\frac{p}{q}\ln(r-qx) = t\left(+c\right)$	Integrate to give In Constant of integration may be missing.	dM1
	Use $t = 0, x = 0$	Substitute $x = 0$ and $t = 0$ to obtain their constant.	ddM1
	$x = \frac{r}{q} - \frac{r}{q} e^{-\frac{q}{p}t}$	Oe	Al
			(4
(b)	$t \to \infty, e^{-\frac{q}{p}t} \to 0,$ $(x \to) \frac{r}{r}$		
	$(x \rightarrow) \frac{r}{q}$	Cao	В1
		1	(1

(ii)	$ye^{2\theta} = \int e^{2\theta} \sin\theta \ d\theta$	Multiply through by IF of the form $e^{\pm 2\theta}$ and integrate LHS (RHS to have integral sign or be integrated later). IF = $e^{2\theta}$ and all correct so far.	M1
	$ye^{2\theta} = \left[-e^{2\theta} \cos \theta \right] + 2 \int e^{2\theta} \cos \theta d\theta$ Or $\left[\frac{1}{2} e^{2\theta} \sin \theta \right] - \frac{1}{2} \int e^{2\theta} \cos \theta d\theta$	Use integration by parts once (signs may be wrong)	MI
$(ye^{2\theta} =)$	$ \left[-e^{2\theta} \cos \theta \right] + 2 \left\{ \left[e^{2\theta} \sin \theta \right] - 2 \int e^{2\theta} \sin \theta d\theta \right\} $ $ \operatorname{Or} \frac{1}{2} e^{2\theta} \sin \theta - \frac{1}{2} \left[\frac{1}{2} e^{2\theta} \cos \theta + \frac{1}{2} \int e^{2\theta} \sin \theta d\theta \right] $	Use parts a second time (Sim conditions to previous use) Must progress the problem - not just undo the first application	MI
59,	$(ye^{2\theta} =) - e^{2\theta}\cos\theta + 2e^{2\theta}\sin\theta - 4\int e^{2\theta}\sin\theta d\theta$ Or $\frac{1}{2}e^{2\theta}\sin\theta - \frac{1}{4}e^{2\theta}\cos\theta - \frac{1}{4}\int e^{2\theta}\sin\theta d\theta$	RHS correct	Al
	$ye^{2\theta} = -e^{2\theta}\cos\theta + 2e^{2\theta}\sin\theta - 4ye^{2\theta} + c$ Or $ye^{2\theta} = \frac{1}{2}e^{2\theta}\sin\theta - \frac{1}{4}e^{2\theta}\cos\theta - \frac{1}{4}ye^{2\theta} + c$ $ye^{2\theta} = \int e^{2\theta}\sin\theta d\theta = \frac{1}{5}e^{2\theta}(2\sin\theta - \cos\theta)(+c)$ $\theta = 0, v = 0 \Rightarrow C = \frac{1}{2}$	Replaces integral on RHS with integral on LHS (can be $ye^{2\theta}$ or $\int e^{2\theta} \sin \theta \ d\theta$) and uses $\theta = 0$, $y = 0$ to obtain a value for the constant. Depends on the second M mark	dM1
0 0	$\theta = 0, y = 0 \Rightarrow C = \frac{1}{5}$ $y = \frac{1}{5}(2\sin\theta - \cos\theta) + \frac{1}{5}e^{-2\theta}$	oe	Alcso (7)

ALT:	By aux equation method:		2
	$m+2=0 \Rightarrow m=-2$	Attempt to solve aux eqn	M1
	$CF (y =) Ce^{-2\theta}$	oe	A1
	PI $(y =) \alpha \sin \theta + \beta \cos \theta$	PI of form shown oe	Ml
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \alpha \cos \theta - \beta \sin \theta$		
	$\alpha\cos\theta - \beta\sin\theta + 2\alpha\sin\theta + 2\beta\cos\theta = \sin\theta$	Diff and subst into equation	M1
	$2\alpha - \beta = 1, \alpha + 2\beta = 0 \Rightarrow \alpha = \frac{2}{5}, \beta = -\frac{1}{5}$	Both $\alpha = \frac{2}{5}$, $\beta = -\frac{1}{5}$	Al
	$\theta = 0, y = 0 \Rightarrow C = \frac{1}{5}$	Use $\theta = 0$, $y = 0$ to obtain a value for the constant	dM1
	$y = \frac{1}{5}(2\sin\theta - \cos\theta) + \frac{1}{5}e^{-2\theta}$	Must start $y = \dots$	Alcso(7) Total 12
NB	If the equation is differentiated to give a second ordered send to review.	der equation and an attempted solu	tion seen -

Q4.

Scheme	Marks
$\frac{dy}{dx} + 5\frac{y}{x} = \frac{\ln x}{x^2}$ Integrating factor $e^{\int \frac{5}{x}}$	M1
$e^{\int \frac{5}{x}} = e^{5\ln x} = x^5$	A1
	M1 M1 A1
$=\frac{x^4 \ln x}{4} - \frac{x^4}{16} \ (+C)$	A1
$x^{5}y = \frac{x^{4} \ln x}{4} - \frac{x^{4}}{16} + C$ $y = \frac{\ln x}{4x} - \frac{1}{16x} + \frac{C}{x^{5}}$	M1 A1
1 st M1 for attempt at correct Integrating Factor 1 st A1 for simplified IF 2 nd M1 for $\frac{\ln x}{x^2}$ times their IF to give their ' $x^3 \ln x$ ' 3rd M1 for attempt at correct Integration by Parts 2 nd A1 for both terms correct 3 rd A1 constant not required 4 th M1 x^5y = their answer + C	
	$\frac{dy}{dx} + 5\frac{y}{x} = \frac{\ln x}{x^2}$ Integrating factor $e^{\int \frac{5}{x}}$ $e^{\int \frac{5}{x}} = e^{5\ln x} = x^5$ $\int x^3 \ln x dx = \frac{x^4 \ln x}{4} - \int \frac{x^3}{4} dx$ $= \frac{x^4 \ln x}{4} - \frac{x^4}{16} (+C)$ $x^5 y = \frac{x^4 \ln x}{4} - \frac{x^4}{16} + C$ $y = \frac{\ln x}{4x} - \frac{1}{16x} + \frac{C}{x^5}$ $1^{st} \text{ M1 for attempt at correct Integrating Factor}$ $1^{st} \text{ A1 for simplified IF}$ $2^{nd} \text{ M1 for } \frac{\ln x}{x^2} \text{ times their IF to give their '} x^3 \ln x'$ $3^{rd} \text{ M1 for attempt at correct Integration by Parts}$ $2^{nd} \text{ A1 for both terms correct}$ $3^{rd} \text{ A1 constant not required}$

Question Number	Scheme	Marks
(a)	$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx}$ and $\frac{dy}{dz} = 2z$ so $\frac{dy}{dx} = 2z \cdot \frac{dz}{dx}$	M1 M1 A1
	Substituting to get $2z \cdot \frac{dz}{dx} - 4z^2 \tan x = 2z$ and thus $\frac{dz}{dx} - 2z \tan x = 1$	M1 A1 (5)
(b)	$I.F. = e^{\int -2\tan x dx} = e^{2\ln \cos x} = \cos^2 x$	M1 A1
	$\therefore \frac{\mathrm{d}}{\mathrm{d}x} (z \cos^2 x) = \cos^2 x \ \therefore z \cos^2 x = \int \cos^2 x dx$	M1
	$\therefore z \cos^2 x = \int \frac{1}{2} (\cos 2x + 1) dx = \frac{1}{4} \sin 2x + \frac{1}{2} x + c$	M1 A1
	$\therefore z = \frac{1}{2} \tan x + \frac{1}{2} x \sec^2 x + c \sec^2 x$	A1 (6)
(c)	$\therefore y = (\frac{1}{2} \tan x + \frac{1}{2} x \sec^2 x + c \sec^2 x)^2$	B1ft (1)

Question Number		Scheme	Marks
Q	$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} - y \cos x = \sin 2x \sin x$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin x} = \frac{\sin 2x \sin x}{\sin x}$	An attempt to divide every term in the differential equation by $\sin x$. Can be implied.	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin x} = \sin 2x$		
	Integrating factor $= e^{\int -\frac{\cos x}{\sin x} dx} = e^{-\ln \sin x}$	$\begin{array}{c} e^{\int \pm \frac{\cos x}{\sin x} \left(dx\right)} \text{ or } e^{\int \pm t \text{heir } P(x) \left(dx\right)} \\ e^{-\ln \sin x} \text{ or } e^{\ln \cos e c x} \end{array}$	dM1 A1 aef
	$=\frac{1}{\sin x}$	$\frac{1}{\sin x}$ or $(\sin x)^{-1}$ or $\csc x$	A1 aef
	$\left(\frac{1}{\sin x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin^2 x} = \frac{\sin 2x}{\sin x}$		
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\sin x} \right) = \sin 2x \times \frac{1}{\sin x}$	$\frac{d}{dx}(y \times \text{their I.F.}) = \sin 2x \times \text{their I.F.}$	м1
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\sin x} \right) = 2\cos x$	$\frac{d}{dx} \left(\frac{y}{\sin x} \right) = 2\cos x \text{ or }$ $\frac{y}{\sin x} = \int 2\cos x (dx)$	A1
	$\frac{y}{\sin x} = \int 2\cos x \mathrm{d}x$		
	$\frac{y}{\sin x} = 2\sin x + K$	A credible attempt to integrate the RHS with/without $+ K$	dddM1
	$y = 2\sin^2 x + K\sin x$	$y = 2\sin^2 x + K\sin x$	A1 cao [8

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2\frac{y}{x} = 4x$	M1
	IF: $e^{\int_{x}^{2} dx} = e^{2 \ln x} = (x^{2})$	M1
	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = 4x^3$	M1dep
	$yx^2 = \int 4x^3 dx = x^4 \left(+c \right)$	M1dep
	$y = x^2 + \frac{c}{x^2}$	Aleso (5)
(b)	$x = 1, y = 5 \Rightarrow c = 4$	M1
	$y = x^2 + \frac{4}{x^2}$	A1ft (2)
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - \frac{8}{x^3}$	
	$\frac{dy}{dx} = 0$ $x^4 = 4$, $x = \pm \sqrt{2}$ or $\pm \sqrt[4]{4}$	M1,A1
	$y = 2 + \frac{4}{2} = 4$	Alcao
	Alt: Complete square on $y =$ or use the original differential equation	M1
	$x = \pm \sqrt{2}, y = 4$	A1,A1
	¥ /	B1 shape
	$\left(-\sqrt{2},4\right)-\left(\sqrt{2},4\right) \rightarrow 2$	B1 turning points shown somewhere (5)
	$(\sqrt{2},4)$	[12]

Notes for Question

(a)

M1 for dividing the given equation by x May be implied by subsequent work.

M1 for IF= $e^{\int_{x}^{2} dx} = e^{2 \ln x} = (x^{2})$ $\int_{x}^{2} dx$ must be seen together with an attempt at integrating this. In x must be seen in the integrated function.

M1dep for multiplying the equation $\frac{dy}{dx} + 2\frac{y}{x} = 4x$ by their IF dep on 2nd M mark

M1dep for attempting the integration of the resulting equation - constant not needed. Dep on 2nd and 3rd M marks

Alcso for
$$y = x^2 + \frac{c}{x^2}$$
 oe eg $yx^2 = x^4 + c$

Alternative: for first three marks: Multiply given equation by x to get straight to the third line. All 3 M marks should be given.

(b) M1 for using x = 1, y = 5 in **their** expression for y to obtain a value for c

A1ft for $y = x^2 + \frac{4}{x^2}$ follow through their result from (a)

(c)

M1 for differentiating their result from (b), equating to 0 and solving for x

A1 for $x = \pm \sqrt{2}$ (no follow through) or $\pm \sqrt[4]{4}$ No extra real values allowed but ignore any imaginary roots shown.

A1cao for using the particular solution to obtain y = 4. No extra values allowed.

Alternatives for these 3 marks:

M1 for making $\frac{dy}{dx} = 0$ in the given differential equation to get $y = 2x^2$ and using this with their particular solution to obtain an equation in one variable

OR complete the square on **their** particular solution to get $y = \left(x + \frac{2}{x}\right)^2 - 4$

A1 for $x = \pm \sqrt{2}$ (no follow through)

Alcao for y = 4 No extra values allowed

B1 for the correct shape - must have two minimum points and two branches, both asymptotic to the y-axis

B1 for a fully correct sketch with the coordinates of the minimum points shown somewhere on or beside the sketch. Decimals accepted here.

Question Number	Scheme	Marks
(a)	$I.F. = e^{\int 2\tan x dx} = e^{2\ln \sec x} = \sec^2 x$	M1A1
	$y \sec^2 x = \int \sec^2 x \sin 2x dx$	M1
	$y \sec^2 x = \int \frac{2 \sin x \cos x}{\cos^2 x} dx = 2 \int \tan x dx$	
	$y\sec^2 x = 2\ln\sec x \ (+c)$	M1depA1
	$y = \frac{2\ln\sec x + c}{\sec^2 x}$	A1ft
(b)	$y=2, \ x=\frac{\pi}{3}$	
	$2 = \frac{2\ln\sec\left(\frac{\pi}{3}\right) + c}{\sec^2\left(\frac{\pi}{3}\right)}$	
	$2 = \frac{2\ln(2) + c}{4}$	
	$c = 8 - 2 \ln 2$	M1A1
	$x = \frac{\pi}{6} y = \frac{2\ln\sec\left(\frac{\pi}{6}\right) + 8 - 2\ln 2}{\sec^2\left(\frac{\pi}{6}\right)}$	
	$y = \frac{2\ln\frac{2}{\sqrt{3}} + 8 - 2\ln 2}{\frac{4}{3}}$	M1
	$y = \frac{3}{4} \left(8 + 2 \ln \frac{1}{\sqrt{3}} \right) = 6 + \frac{3}{2} \ln \frac{1}{\sqrt{3}} = 6 - \frac{3}{4} \ln 3$	A1
		10 Mark

Scheme	Marks
c may not appear explicitly:	
$e^2 \frac{\pi}{3} = 2 \ln \left(\frac{\sec \frac{\pi}{6}}{\sec \frac{\pi}{3}} \right)$	M1A1
$\frac{1}{\sqrt{3}}$	
$\ln \frac{1}{\sqrt{3}} = 6 + \frac{3}{2} \ln \frac{1}{\sqrt{3}} = 6 - \frac{3}{4} \ln 3$	M1A1
	Scheme c may not appear explicitly: $ec^{2} \frac{\pi}{3} = 2 \ln \left(\frac{\sec \frac{\pi}{6}}{\sec \frac{\pi}{3}} \right)$ $\frac{1}{\sqrt{3}}$ $\ln \frac{1}{\sqrt{3}} = 6 + \frac{3}{2} \ln \frac{1}{\sqrt{3}} = 6 - \frac{3}{4} \ln 3$

NOTES

Question a

M1 for the $e^{\int 2\tan x dx}$ or $e^{\int \tan x dx}$ and attempting the integration - $e^{(2)\ln x + 2}$ should be seen if final result is not $\sec^2 x$

A1 for IF = $\sec^2 x$

M1 for multiplying the equation by their IF and attempting to integrate the lhs

M1dep for attempting the integration of the rhs $\sin 2x = 2 \sin x \cos x$ and $\sec x = \frac{1}{\cos x}$ needed. Dependent on the second M mark

A1cao for all integration correct ie $y \sec^2 x = 2 \ln \sec x \ (+c)$ constant not needed

A1ft for re-writing their answer in the form y = ... Accept any equivalent form but the constant must be present. eg $y = \frac{\ln(A \sec^2 x)}{\sec^2 x}$, $y = \cos^2 x \left[\ln(\sec^2 x) + c\right]$

Notes for Question Continued

Question b

M1 for using the given values y = 2, $x = \frac{\pi}{3}$ in their general solution to obtain a value for the constant of integration

A1 for eg $c = 8 - 2 \ln 2$ or $A = \frac{1}{4} e^{8}$ (Check the constant is correct for their correct answer for (a)).

Answers to 3 significant figures acceptable here and can include $\cos \frac{\pi}{3}$ or $\sec \frac{\pi}{3}$

M1 for using their constant and $x = \frac{\pi}{6}$ in their general solution and attempting the simplification to the required form.

Alcao for
$$y = 6 - \frac{3}{4} \ln 3$$
 $\left(\frac{3}{4} \text{ or } 0.75 \right)$

Alternative to b

M1 for finding the difference between $y \sec^2 \frac{\pi}{6}$ and $2 \sec^2 \frac{\pi}{3}$ (or equivalent with their general solution)

A1 for
$$y \sec^2 \frac{\pi}{6} - 2 \sec^2 \frac{\pi}{3} = 2 \ln \left(\frac{\sec \frac{\pi}{6}}{\sec \frac{\pi}{3}} \right)$$

M1 for re-arranging to y = ... and attempting the simplification to the required form

A1cao for
$$y = 6 - \frac{3}{4} \ln 3$$
 $\left(\frac{3}{4} \text{ or } 0.75\right)$

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y\tan x = \mathrm{e}^{4x}\cos^2 x$	
	$e^{2\int \tan x dx} = e^{2\ln x dx} = \sec^2 x$ or $\frac{1}{\cos^2 x}$	M1A1
	$\sec^2 x \frac{dy}{dx} + 2y \tan x \sec^2 x = e^{4x} \cos^2 x \sec^2 x$	dM1
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(y \sec^2 x \right) = \mathrm{e}^{4x}$	B1ft($y \sec^2 x$
	$y\sec^2 x = \frac{1}{4}e^{4x} (+c)$	M1
	$y = \left(\frac{1}{4}e^{4x} + c\right)\cos^2 x \qquad \text{oe}$	A1 (6)
(b)	$y = 1, x = 0 1 = \left(\frac{1}{4} + c\right)$	M1
	$c = \frac{3}{4}$	
	$y = \frac{1}{4} \left(e^{4x} + 3 \right) \cos^2 x \text{oe}$	A1 (2
		(2 [8
	Notes for Question M1 attempting the integrating factor, including integration of (2)tan x	
	ln cos or ln sec seen	
	A1 correct integrating factor $\sec^2 x$ or $\frac{1}{\cos^2 x}$	
(a)	M1 multiplying the equation by the integrating factor – may be implied by the next line. B1ft $y \times$ their IF	
	M1 attempting a complete integration of rhs Must include ke^{4x} but $4e^{4x}$ would imply differentiation. Constant not needed (Incorrect IF may lead to integration by parts, so integration must be complete) A1 correct solution in form $y =$ constant must be included	
(b)	M1 using given initial conditions to obtain a value for c A1 fully correct final answer May be in the form $y \sec^2 x =$ or $4y \sec^2 x =$	

Question Number	Scheme	Marks
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{\tan x} = 3\cos 2x$	
	$\int \cot x \mathrm{d}x = \ln \left \sin x \right , \text{IF} = \sin x$	M1
	$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} + y \cos x = 3\cos 2x \sin x$	
	$y\sin x = \int 3\cos 2x\sin x \mathrm{d}x$	M1A1
	$y\sin x = \int 3(2\cos^2 x - 1)\sin x dx \qquad y\sin x = \frac{3}{2}\int (\sin 3x - \sin x) dx$	
	$y \sin x = 3 \left[-\frac{2}{3} \cos^3 x + \cos x \right] (+c) \left[y \sin x = \frac{3}{2} \left[-\frac{1}{3} \cos 3x + \cos x \right] (+c) \right]$	dM1A1
	$y = \frac{3\cos x - 2\cos^3 x + c'}{\sin x}$ oe $y = \frac{-3\cos 3x + 3\cos x + c'}{2\sin x}$	B1ft [6] (A1 on e-PEN)

Ml Divide by tan and attempt IF efcot xdx or equivalent needed

Ml Multiply through by IF and integrate LHS

Al correct so far

dM1 dep (on previous M mark) integrate RHS using double angle or factor formula $k\cos^2 x \sin x \to \pm \cos^3 x$, $k\sin^2 x \cos x \to k\sin^3 x$, $\cos 3x \to \pm \frac{1}{3}\sin 3x$, $\sin 3x \to \pm \frac{1}{3}\cos 3x$

All correct so far constant not needed

Blft obtain answer in form y = ... any equivalent form Constant must be included and dealt with correctly. Award if correctly obtained from the previous line

Alternatives for integrating the RHS:

(i) By parts: Needs 2 applications of parts or one application followed by a trig method. Give M1 only if method is complete and A1 for a correct result.

(ii)
$$y \sin x = \int 3(1 - 2\sin^2 x) \sin x \, dx = \int 3\sin x - 6\sin^3 x \, dx$$

Then use $\sin 3x = 3\sin x - 4\sin^3 x$ to get $y\sin x = \int \frac{3}{2}(\sin 3x - \sin x) dx$ and integration

shown above - both steps needed for M1

i č	ALTERNATIVE: Mult through by cos x	
	$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} + y \cos x = 3\cos 2x \sin x$	M1
	$y\sin x = \int 3\cos 2x \sin x \mathrm{d}x$	M1A1
	Rest as main scheme	n

Question Number	Scheme	Marks
	$m^2 + 5m + 6 = 0 \qquad m = -2, -3$	M1
	C.F. $(x =) A e^{-2t} + B e^{-3t}$	A1
	$P.I. x = P\cos t + Q\sin t$	B1
	$\dot{x} = -P\sin t + Q\cos t$ $\ddot{x} = -P\cos t - Q\sin t$	M1
	$(-P\cos t - Q\sin t) + 5(-P\sin t + Q\cos t) + 6(P\cos t + Q\sin t) = 2\cos t - \sin t$	M1
	-P+5Q+6P=2 and $-Q-5P+6Q=-1$, and solve for P and Q	M1
	$P = \frac{3}{10}$ and $Q = \frac{1}{10}$	A1 A1
	$x = Ae^{-2t} + Be^{-3t} + \frac{3}{10}\cos t + \frac{1}{10}\sin t$	B1 ft
	10 10	(
	Notes 1 st M1 form quadratic and attempt to solve (usual rules) 1 st B1 Accept negative signs for coefficients. Coefficients must be different. 2 nd M1for differentiating their trig PI twice 3 rd M1 for substituting x, x and x expressions 4 th M1 Form 2 equations in two unknowns and attempt to solve 1 st A1 for one correct, 2 nd A1 for two correct 2 nd B1 for x=their CF + their PI as functions of t Condone use of the wrong variable (e.g. x instead of t) for all marks	
	except final B1.	

Question Number	Scheme	Marks
(a)	$m^2 + 6m + 9 = 0$ $m = -3$	M1
. ,	C.F. $x = (A + Bt)e^{-3t}$	A1
	$P.I. x = P\cos 3t + Q\sin 3t$	B1
	$\dot{x} = -3P\sin 3t + 3Q\cos 3t$	
	$\ddot{x} = -9P\cos 3t - 9Q\sin 3t$	M1
	$(-9P\cos 3t - 9Q\sin 3t) + 6(-3P\sin 3t + 3Q\cos 3t) + 9(P\cos 3t + Q\sin 3t) = \cos 3t$	M1
	-9P+18Q+9P=1 and $-9Q-18P+9Q=0$	M1
	$P = 0$ and $Q = \frac{1}{18}$	A1
	$x = (A + Bt)e^{-3t} + \frac{1}{18}\sin 3t$	A1ft
		(8
(b)	$t=0: x=A=\frac{1}{2}$	B1
	$x = -3(A + Bt)e^{-3t} + Be^{-3t} + \frac{3}{18}\cos 3t$	M1
	$t = 0$: $x = -3A + B + \frac{1}{6} = 0$ $B = \frac{4}{3}$	M1 A1
	$x = \left(\frac{1}{2} + \frac{4t}{3}\right) e^{-3t} + \frac{1}{18} \sin 3t$	A1
		(5
(c)	$t \approx \frac{59\pi}{6} \ (\approx 30.9)$	B1
	$x \approx -\frac{1}{x}$	B1ft
	18	(2
(a)	1 st M1 Form auxiliary equation and correct attempt to solve. Can be implied from correct exponential. 2 nd M1 for attempt to differentiate PI twice 3 rd M1 for substituting their expression into differential equation	
(b)	4 th M1 for substitution of both boundary values 1 st M1 for correct attempt to differentiate their answer to part (a) 2 nd M1 for substituting boundary value	

Question Number	Scheme	Marks
(a)	Differentiate twice and obtaining $\frac{dy}{dx} = \lambda \sin 5x + 5\lambda x \cos 5x \text{ and } \frac{d^2y}{dx^2} = 10\lambda \cos 5x - 25\lambda x \sin 5x$	M1 A1
	Substitute to give $\lambda = \frac{3}{10}$	M1 A1 (4)
(b)	Complementary function is $y = A\cos 5x + B\sin 5x$ or $Pe^{5ix} + Qe^{-5ix}$	M1 A1
	So general solution is $y = A\cos 5x + B\sin 5x + \frac{3}{10}x\sin 5x$ or in exponential form	A1ft (3)
(c)	y=0 when $x=0$ means $A=0$	B1
	$\frac{dy}{dx} = 5B\cos 5x + \frac{3}{10}\sin 5x + \frac{3}{2}x\cos 5x \text{ and at } x = 0 $ $\frac{dy}{dx} = 5 \text{ and so } 5 = 5A$	M1 M1
	So $B=1$	A1
	So $y = \sin 5x + \frac{3}{10}x\sin 5x$	A1 (5)
(d)	"Sinusoidal" through O amplitude becoming larger Crosses x axis at $\frac{\pi}{5}, \frac{2\pi}{5}, \frac{3\pi}{5}, \frac{4\pi}{5}$	B1 B1 (2)
		14

Question Number	Scheme		Marks
(a)	$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 2e^{-t}, x = 0, \frac{dx}{dt} = 2 \text{ at } t = 0.$ $AE, m^2 + 5m + 6 = 0 \implies (m+3)(m+2) = 0$ $\implies m = -3, -2.$		
	So, $x_{CF} = Ae^{-3t} + Be^{-2t}$ $\left\{ x = ke^{-t} \implies \frac{dx}{dt} = -ke^{-t} \implies \frac{d^2x}{dt^2} = ke^{-t} \right\}$	$A\mathrm{e}^{m_1t}+B\mathrm{e}^{m_2t}$, where $m_1\neq m_2$. $A\mathrm{e}^{-3t}+B\mathrm{e}^{-2t}$	M1 A1
	$\Rightarrow k e^{-t} + 5(-k e^{-t}) + 6k e^{-t} = 2e^{-t} \Rightarrow 2k e^{-t} = 2e^{-t}$ $\Rightarrow k = 1$ {So, $x_{pq} = e^{-t}$ }	Substitutes $k e^{-t}$ into the differential equation given in the question. Finds $k = 1$.	M1 A1
	So, $x = Ae^{-3t} + Be^{-2t} + e^{-t}$	their x_{CF} + their x_{PI}	M1*
	$\frac{dx}{dt} = -3Ae^{-3t} - 2Be^{-2t} - e^{-4}$	Finds $\frac{dx}{dt}$ by differentiating their x_{CF} and their x_{PI}	dM1*
	$t = 0, x = 0 \Rightarrow 0 = A + B + 1$ $t = 0, \frac{dx}{dt} = 2 \Rightarrow 2 = -3A - 2B - 1$	Applies $t = 0$, $x = 0$ to $x = 0$ and $t = 0$, $\frac{dx}{dt} = 0$ to $\frac{dx}{dt}$ to form simultaneous equations.	ddM1*
	$\begin{cases} 2A + 2B = -2 \\ -3A - 2B = 3 \end{cases}$		
	$\Rightarrow A = -1, B = 0$ So, $x = -e^{-3t} + e^{-t}$	$x = -e^{-3t} + e^{-t}$	A1 cao

Question Number	Scheme	Marks
(b)	$x = -e^{-3t} + e^{-t}$ $\frac{dx}{dt} = 3e^{-3t} - e^{-t} = 0$ Differentiates their x to give $\frac{dx}{dt}$ and puts $\frac{dx}{dt}$ equal to 0.	M1
	$3 - e^{2t} = 0$ A credible attempt to solve. $\Rightarrow t = \frac{1}{2} \ln 3 \qquad t = \frac{1}{2} \ln 3 \text{ or } t = \ln \sqrt{3} \text{ or awrt } 0.55$	dM1* A1
	So, $x = -e^{-\frac{3}{2}\ln 3} + e^{-\frac{1}{2}\ln 3} = -e^{\ln 3^{-\frac{3}{2}}} + e^{\ln 3^{-\frac{1}{2}}}$ Substitutes their t back into x and an attempt to eliminate out the $\ln x$ s. $= -\frac{1}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}$ uses exact values to give $\frac{2\sqrt{3}}{9}$	ddM1 A1 AG
	$\frac{d^2x}{dt^2} = -9e^{-3t} + e^{-t}$ $\text{Finds } \frac{d^2x}{dt^2}$ $\text{At } t = \frac{1}{2}\ln 3, \frac{d^2x}{dt^2} = -9e^{-\frac{1}{2}\ln 3} + e^{-\frac{1}{2}\ln 3}$ and substitutes their t into $\frac{d^2x}{dt^2}$	dM1°
	$= -9(3)^{-\frac{1}{2}} + 3^{-\frac{1}{2}} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = -\frac{3}{\sqrt{3}} + \frac{1}{\sqrt{3}}$ As $\frac{d^2x}{dt^2} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \left\{-\frac{2}{\sqrt{3}}\right\} < 0$ $-\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} < 0$ and maximum then x is maximum.	A
		[1

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}v}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x} + x \frac{\mathrm{d}^2 v}{\mathrm{d}x^2}$	M1A1
	$4x^{2}\left(2\frac{dv}{dx} + x\frac{d^{2}v}{dx^{2}}\right) - 8x\left(v + x\frac{dv}{dx}\right) + \left(8 + 4x^{2}\right) \times xv = x^{4}$	M1
	$4x^3 \frac{d^2v}{dx^2} + 4x^3v = x^4$	М1
	$4\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + 4v = x$	A1 (6)
	See end for an alternative for (a)	
(b)	$4\lambda^2 + 4 = 0$	
	$\lambda^2 = -1$ oe	M1A1
	$(v=)C\cos x + D\sin x$ (or $(v=)Ae^{ix} + Be^{-ix}$)	A1
	P.I: Try $v = kx (+l)$	
	$\frac{\mathrm{d}v}{\mathrm{d}x} = k \frac{\mathrm{d}^2v}{\mathrm{d}x^2} = 0$	M1
	$4 \times 0 + 4(kx(+l)) = x$	M1dep
	$k = \frac{1}{4} (l = 0)$	
	$v = C\cos x + D\sin x + \frac{1}{4}x$ (or $v = Ae^{ix} + Be^{-ix} + \frac{1}{4}x$)	A1 (6)
(c)	$y = x \left(C \cos x + D \sin x + \frac{1}{4} x \right) \qquad \left(\text{or} y = x \left(A e^{ix} + B e^{-ix} + \frac{1}{4} x \right) \right)$	B1ft (1)

Question continued	
Alternative for (a): $v = \frac{y}{x}$	
$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{1}{x} - y \times \frac{1}{x^2}$	M1
$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \times \frac{1}{x} - \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{1}{x^2} - \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{1}{x^2} + 2y \times \frac{1}{x^3}$	M1A1
$x^{3} \frac{d^{2}v}{dx^{2}} = x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} + 2y$	M1
$4x^{3} \frac{d^{2}v}{dx^{2}} + 4x^{3}v = 4x^{2} \frac{d^{2}y}{dx^{2}} - 8x \frac{dy}{dx} + 8y + 4x^{2}y = x^{4}$	M1
$4\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + 4v = x$	A1

Notes for Question

(a)

M1 for attempting to differentiate y = xv to get $\frac{dy}{dx}$ - product rule must be used

M1 for differentiating their $\frac{dy}{dx}$ to obtain an expression for $\frac{d^2y}{dx^2}$ - product rule must be used

A1 for $\frac{d^2y}{dx^2} = \frac{dv}{dx} + \frac{dv}{dx} + x\frac{d^2v}{dx^2}$

M1 for substituting their $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ and y = xv in the original equation to obtain a differential equation in v and x

M1 for collecting the terms to have at most a 4 term equation - 4 terms only if a previous error causes $\frac{dv}{dx}$ to be included, otherwise 3 terms

Alcao and eso

for
$$4 \frac{d^2 v}{dx^2} + 4v = x$$

Alternative: (see end of mark scheme)

M1 for writing $v = \frac{y}{x}$ and attempting to differentiate by quotient or product rule to get $\frac{dv}{dx}$

M1 for differentiating their $\frac{dv}{dx}$ to obtain an expression for $\frac{d^2v}{dx^2}$ - product or quotient rule must be used

A1 for $\frac{d^2v}{dx^2} = \frac{d^2y}{dx^2} \times \frac{1}{x} - \frac{dy}{dx} \times \frac{1}{x^2} - \frac{dy}{dx} \times \frac{1}{x^2} + 2y \times \frac{1}{x^3}$

M1 for multiplying their $\frac{d^2v}{dx^2}$ by x^3

M1 for multiplying by 4 and adding $4x^2y$ to each side and equating to x^4 (as rhs is now identical to the original equation.

Alcao and eso

for
$$4\frac{d^2v}{dx^2} + 4v = x$$
 *

(b)

M1 for forming the auxiliary equation and attempting to solve

A1 for $\lambda^2 = -1$ oe

A1 for the complementary function in either form. Award for a correct CF even if $\lambda = i$ only is shown.

Notes for Question continued

M1 for trying one of v = kx, $k \ne 1$ or v = kx + l and $v = mx^2 + kx + l$ as a PI and obtaining $\frac{dv}{dx}$ and $\frac{d^2v}{dx^2}$

M1dep for substituting their differentials in the equation $4\frac{d^2v}{dx^2} + 4v = x$. Award M0 if the original equation is used. Dep on 2nd M mark of (b)

Alcao for obtaining the correct result (either form)
(c)

B1ft for reversing the substitution to get $y = x \left(C \cos x + D \sin x + \frac{1}{4} x \right)$

or $y = x \left(Ae^{ix} + Be^{-ix} + \frac{1}{4}x \right)$ follow through their answer to (b)

Question Number	Scheme	Marks
(a)	$y = \lambda t^2 e^{3t}$	
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 2\lambda t \mathrm{e}^{3t} + 3\lambda t^2 \mathrm{e}^{3t}$	M1A1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = 2\lambda e^{3t} + 6\lambda t e^{3t} + 6\lambda t e^{3t} + 9\lambda t^2 e^{3t}$	A1
	$2\lambda e^{3t} + 6\lambda t e^{3t} + 6\lambda t e^{3t} + 9\lambda t^2 e^{3t} - 12\lambda t e^{3t} - 18\lambda t^2 e^{3t} + 9\lambda t^2 e^{3t} = 6e^{3t}$	M1dep
	$\lambda = 3$	A1cso
		(
	NB. Candidates who give $\lambda = 3$ without all this working get 5/5 provided no erroneous working is seen.	
(b)	$m^2 - 6m + 9 = 0$	
	$\left(m-3\right)^2=0$	
	C.F. $(y=) (A+Bt)e^{3t}$	M1A1
	G.S. $y = (A + Bt)e^{3t} + 3t^2e^{3t}$	A1ft
(c)	$t = 0 y = 5 \Rightarrow A = 5$	B1
	$\frac{dy}{dt} = Be^{3t} + 3(A + Bt)e^{3t} + 6te^{3t} + 9t^2e^{3t}$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 4 \qquad 4 = B + 15$	M1dep
	B = -11	A1
	Solution: $y = (5-11t)e^{3t} + 3t^2e^{3t}$	A1ft
		13 Mar

Notes for Question

Question a

M1 for differentiating $y = \lambda t^2 e^{3t}$ wrt t. Product rule must be used.

A1 for correct differentiation ie
$$\frac{dy}{dt} = 2\lambda t e^{3t} + 3\lambda t^2 e^{3t}$$

A1 for a correct second differential
$$\frac{d^2y}{dt^2} = 2\lambda e^{3t} + 6\lambda t e^{3t} + 6\lambda t e^{3t} + 9\lambda t^2 e^{3t}$$

M1dep for substituting their differentials in the equation and obtaining a numerical value for λ Dependent on the first M mark.

A1cso for $\lambda = 3$ (no incorrect working seen)

NB. Candidates who give $\lambda = 3$ without all this working get 5/5 provided no erroneous working is seen. Candidates who attempt the differentiation should be marked on that. If they then go straight to $\lambda = 3$ without showing the substitution, give M1A1 if differentiation correct and M1A0 otherwise, as the solution is incorrect. If $\lambda \neq 3$ then the M mark is only available if the substitution is shown.

Question b

M1 for solving the 3 term quadratic auxiliary equation to obtain a value or values for m (usual rules for solving a quadratic equation)

A1 for the CF
$$(y=)(A+Bt)e^{3t}$$

A1ft for using their CF and their numerical value of λ in the particular integral to obtain the general solution $y = (A + Bt)e^{3t} + 3t^2e^{3t}$ Must have y = ... and rhs must be a function of t.

Question c

B1 for deducing that A = 5

M1 for differentiating their GS to obtain $\frac{dy}{dt} = ...$ The product rule must be used.

M1dep for using $\frac{dy}{dt} = 4$ and their value for A in their $\frac{dy}{dt}$ to obtain an equation for B Dependent on the previous M mark (of (c))

A1cao and cso for B = -11

A1ft for using their numerical values A and B in their GS from (b) to obtain the particular solution. Must have y = ... and rhs must be a function of t.

Question Number	Scheme		Marks
(a)	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y = 27e^{-x}$		
	$m^2 + 2m + 10 \ (= 0) \Rightarrow m =$	Form and solve the aux equation	M1
-	$m = -1 \pm 3i$		A1
	$(y =) e^{-x} (A\cos 3x + B\sin 3x)$ or $(y =) A e^{(-1+3i)x} + B e^{(-1-3i)x}$	y = not needed May be seen with θ instead of x	A1
	$y = ke^{-x}, y' = -ke^{-x}, y'' = ke^{-x}$	$y = ke^{-x}$ and attempt to differentiate twice	M1
	$e^{-x}(k-2k+10k) = 27e^{-x} \Rightarrow k = 3$		A1
	$y = e^{-x} (A\cos 3x + B\sin 3x + 3)$ or $y = Ae^{(-1+3i)x} + Be^{(-1-3i)x} + 3e^{-x}$	Must be x and have $y =$ Ignore any attempts to change the second form. (But see note at end about marking (b)) ft, so $y = $ their CF + their PI	B1ft (NB A1 on e- PEN)
			(6
(b)	$x = 0, y = 0 \Rightarrow A = (-3)$	Uses $x = 0$, $y = 0$ in an attempt to find A	M1
	$y' = -e^{-x} (A\cos 3x + B\sin 3x + 3) +$	M1: Attempt to differentiate using the product rule, with A or their value of A	M1A1
	$e^{-x}\left(3B\cos 3x - 3A\sin 3x\right)$	A1: Correct derivative, with A or their value of A	WIIAI
	$x = 0, y' = 0 \Longrightarrow B = 0$	M1: Uses $x = 0$, $y' = 0$ and their value of A in an attempt to find B A1: $B = 0$	M1A1
	$y = e^{-x}(3 - 3\cos 3x)$ oe	cao and cso	A1 (6
			Total 12

Alternative for (b) using	$y = Ae^{(-1+3i)x} + Be^{(-1-3i)x} + 3e^{-x}$	
x = 0, y = 0 to get an equation in A and B	May come from the real part of their derivative instead	M1
$y' = (-1+3i)Ae^{(-1+3i)x} + (-1-3i)Be^{(-1-3i)x} - 3e^{-x}$	M1: Attempt differentiation using chain rule A1: Correct differentiation	M1A1
$x = 0, y' = 0 \Rightarrow -A - B - 3 = 0$ from real parts and $3A - 3B = 0$ from imaginary parts So $A = B = -\frac{3}{2}$	M1: Uses $x = 0$, $y' = 0$ and equates imaginary parts to obtain a second equation for A and B and attempts to solve their equations A1: $A = B = -\frac{3}{2}$	M1A1
$y = -\frac{3}{2}e^{(-1+3i)x} - \frac{3}{2}e^{(-1-3i)x} + 3e^{-x}$	A1: Ignore any attempts to change.	A1

Some may change the second form in (a) before proceeding to (b). If their changed form is correct, all marks for (b) are available; if their changed form is incorrect only M marks are available.

Question Number	Scheme	Marks
(a)	$x = e^z$	
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \mathrm{e}^z \frac{\mathrm{d}z}{\mathrm{d}y}$	М1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-z} \frac{\mathrm{d}y}{\mathrm{d}z}$	A1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\mathrm{e}^{-z} \frac{\mathrm{d}z}{\mathrm{d}x} \times \frac{\mathrm{d}y}{\mathrm{d}z} + \mathrm{e}^{-z} \frac{\mathrm{d}^2 y}{\mathrm{d}z^2} \times \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{x^2} \left(-\frac{\mathrm{d}y}{\mathrm{d}z} + \frac{\mathrm{d}^2 y}{\mathrm{d}z^2} \right)$	M1A1A1
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2x \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 3\ln x$	
	$x^{2} \left(-\frac{1}{x^{2}} \frac{dy}{dz} + \frac{1}{x^{2}} \frac{d^{2}y}{dz^{2}} \right) + 2x \times \frac{1}{x} \frac{dy}{dz} - 2y = 3z$	М1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} + \frac{\mathrm{d}y}{\mathrm{d}z} - 2y = 3z$	A1 (7)
	Alt: $z = \ln x$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}z} \times \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}z}$	M1A1
	$\frac{d^2 y}{dx^2} = -\frac{1}{x^2} \frac{dy}{dz} + \frac{1}{x} \frac{d^2 y}{dz^2} \times \frac{dz}{dx} = -\frac{1}{x^2} \frac{dy}{dz} + \frac{1}{x^2} \frac{d^2 y}{dz^2}$	M1A1A1
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2x \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 3\ln x$	
	$x^{2}\left(-\frac{1}{x^{2}}\frac{\mathrm{d}y}{\mathrm{d}z} + \frac{1}{x^{2}}\frac{\mathrm{d}^{2}y}{\mathrm{d}z^{2}}\right) + 2x \times \frac{1}{x}\frac{\mathrm{d}y}{\mathrm{d}z} - 2y = 3z$	М1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} + \frac{\mathrm{d}y}{\mathrm{d}z} - 2y = 3z$	A1 (7

Question Number	Scheme	Marks
(b)	Aux eqn: $m^2 + m - 2 = 0$	
	(
	(m+2)(m-1)=0	
	m = -2, 1	M1A1
	CF: $y = Ae^{-2z} + Be^{z}$	A1
	PI: Try $y = az + b$	
	$\frac{\mathrm{d}y}{\mathrm{d}z} = a \frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = 0$	
	a-2(az+b)=3z	
	$a = -\frac{3}{2}, b = -\frac{3}{4}$	M1
	Complete soln: $y = Ae^{-2z} + Be^z - \frac{3}{2}z - \frac{3}{4}$	A1A1 (6
(c)	$y = Ax^{-2} + Bx - \frac{3}{2}\ln x - \frac{3}{4}$	B1 ft (1
		[14]
	Notes for Question	
	M1 differentiates $x = e^z$ wrt y; chain rule must be used A1 correct differentiation	
	M1 differentiates again to obtain $\frac{d^2y}{dx^2}$	
(a)	A1A1 one mark for each correct term	
	M1 substitutes in the given equation A1cso obtains the required equation	
	ALT:	
	Works with $z = \ln x$; marks awarded as above	
	M1 forms and solves the auxiliary equation	
	A1 both values for m correct - may be implied by their CF	
(h)	A1 correct CF M1 tries a suitable expression for the PF and obtains values for the	
(b)	constants in the PF	
	A1A1 shows the complete solution; one mark for each correct term in the PF	
(c)	B1ft reverses the substitution to obtain the solution in the form $y =$	
(c)	Follow through their complete solution from (b)	

Question Number	Scheme	Marks
(a)	$x = e^{u}$ $\frac{dx}{du} = e^{u}$ or $\frac{du}{dx} = e^{-u}$ or $\frac{dx}{du} = x$ or $\frac{du}{dx} = \frac{1}{x}$	В1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^{-u} \frac{\mathrm{d}y}{\mathrm{d}u}$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\mathrm{e}^{-u} \frac{\mathrm{d}u}{\mathrm{d}x} \frac{\mathrm{d}y}{\mathrm{d}u} + \mathrm{e}^{-u} \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^{-2u} \left(-\frac{\mathrm{d}y}{\mathrm{d}u} + \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \right)$	M1A1
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 7x \frac{\mathrm{d}y}{\mathrm{d}x} + 16y = 2\ln x$	
	$e^{2u} \times e^{-2u} \left(-\frac{dy}{du} + \frac{d^2y}{du^2} \right) - 7e^u \times e^{-u} \frac{dy}{du} + 16y = 2\ln\left(e^u\right)$	dM1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - 8\frac{\mathrm{d}y}{\mathrm{d}u} + 16y = 2u$	Alcso (6)

(a) B1 for $\frac{dx}{du} = e^u$ oe as shown seen explicitly or used

M1 obtaining $\frac{dy}{dx}$ using chain rule here or seen later

M1 obtaining $\frac{d^2y}{dx^2}$ using product rule (penalise lack of chain rule by the A mark)

Al a correct expression for $\frac{d^2y}{dx^2}$ any equivalent form

dM1 substituting in the equation to eliminate x Only u and y now Depends on the 2nd M mark

Alcso obtaining the given result from completely correct work

AICSO	obtaining the given result from completely correct work	
	ALTERNATIVE 1	
	$x = e^u \frac{dx}{du} = e^u = x$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}u} = x \frac{\mathrm{d}y}{\mathrm{d}x}$	M1
	$\frac{d^2y}{du^2} = 1\frac{dx}{du} \times \frac{dy}{dx} + x\frac{d^2y}{dx^2} \times \frac{dx}{du} = x\frac{dy}{dx} + x^2\frac{d^2y}{dx^2}$	M1A1
	$x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{du^2} - \frac{dy}{du}$	
	$\left(\frac{d^2y}{du^2} - \frac{dy}{du}\right) - 7x \times \frac{1}{x} \frac{dy}{du} + 16y = 2\ln\left(e^u\right)$	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - 8\frac{\mathrm{d}y}{\mathrm{d}u} + 16y = 2u$	dM1A1cso (6)

Bl As above

M1 obtaining $\frac{dy}{dy}$ using chain rule here or seen later

M1 obtaining $\frac{d^2y}{du^2}$ using product rule (penalise lack of chain rule by the A mark)

Question Number	Scheme	Marks
Al dM1Aleso	Correct expression for $\frac{d^2y}{du^2}$ any equivalent form As main scheme	
9	ALTERNATIVE 2: $u = \ln x \frac{du}{dx} = \frac{1}{x}$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}u}$	M1
	$\frac{d^{2}y}{dx^{2}} = -\frac{1}{x^{2}}\frac{dy}{du} + \frac{1}{x}\frac{d^{2}y}{du^{2}} \times \frac{du}{dx} = -\frac{1}{x^{2}}\frac{dy}{du} + \frac{1}{x^{2}}\frac{d^{2}y}{du^{2}}$	M1A1
	$x^{2} \left(-\frac{1}{x^{2}} \frac{dy}{du} + \frac{1}{x^{2}} \frac{d^{2}y}{du^{2}} \right) - 7x \times \frac{1}{x} \frac{dy}{du} + 16y = 2u$	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - 8\frac{\mathrm{d}y}{\mathrm{d}u} + 16y = 2u$	dM1A1cso

See the notes for the main scheme.

There are also other solutions which will appear, either starting from equation II and obtaining equation I, or mixing letters x, y and u until the final stage.

Mark as follows:

Bl as shown in schemes above

Ml obtaining a first derivative with chain rule

M1 obtaining a second derivative with product rule

Al correct second derivative with 2 or 3 variables present

dM1 Either substitute in equation I or substitute in equation II according to method chosen and obtain an equation with only y and u (following sub in eqn I) or with only x and y (following sub in eqn II)

Alcso Obtaining the required result from completely correct work

Question Number	Scheme	Marks
(b)	$m^2 - 8m + 16 = 0$	
	$\left(m-4\right)^2=0 \qquad m=4$	M1A1
	$(CF =) (A + Bu) e^{4u}$	A1
	PI: try $y = au + b$ (or $y = cu^2 + au + b$ different derivatives, $c = 0$)	
	$\frac{\mathrm{d}y}{\mathrm{d}u} = a \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} = 0$	M1
	0-8a+16(au+b)=2u	
	$a = \frac{1}{8}$ $b = \frac{1}{16}$ oe (decimals must be 0.125 and 0.0625)	dM1A1
	$\therefore y = (A + Bu)e^{4u} + \frac{1}{8}u + \frac{1}{16}$	B1ft (7)
(c)	$y = (A + B \ln x)x^4 + \frac{1}{8} \ln x + \frac{1}{16}$	B1 (1)

- (b) M1 writing down the correct aux equation and solving to m = ... (usual rules)
 - Al the correct solution (m=4)
 - Al the correct CF can use any (single) variable
 - M1 using an appropriate PI and finding $\frac{dy}{du}$ and $\frac{d^2y}{du^2}$ Use of $y = \lambda u$ scores M0
 - dM1 substitute in the equation to obtain values for the unknowns Dependent on the second M1
 - Al correct unknowns two or three (c = 0)
 - Blft a complete solution, follow through their CF and PI. Must have y = a function of u Allow recovery of incorrect variables.
- (c) B1 reverse the substitution to obtain a correct expression for y in terms of x. No ft here x^4 or $e^{4\ln x}$ allowed. Must start $y = \dots$

$\frac{dx}{du} = e^{u} \text{ or } \frac{du}{dx} = e^{-u} \text{ or } \frac{dx}{du} = x \text{ or } \frac{du}{dx} = \frac{1}{x}$ $\frac{dy}{du} \times \frac{du}{dx} = e^{-u} \frac{dy}{du}$ $= -e^{-u} \frac{du}{dx} \frac{dy}{du} + e^{-u} \frac{d^{2}y}{du^{2}} \frac{du}{dx} = e^{-2u} \left(-\frac{dy}{du} + \frac{d^{2}y}{du^{2}} \right)$ $\frac{dy}{dx} - 2x \frac{dy}{dx} + 2y = -x^{-2}$ $\frac{dy}{du} + \frac{d^{2}y}{du^{2}} - 2e^{u} \times e^{-u} \frac{dy}{du} + 2y = -e^{-2u}$ $\frac{dy}{du} + 2y = -e^{-2u}$	M1A1 M1A1 dM1 A1cso
$\frac{dy}{du} \times \frac{du}{dx} = e^{-u} \frac{dy}{du}$ $= -e^{-u} \frac{du}{dx} \frac{dy}{du} + e^{-u} \frac{d^2y}{du^2} \frac{du}{dx} = e^{-2u} \left(-\frac{dy}{du} + \frac{d^2y}{du^2} \right)$ $= \frac{v^2}{u^2} - 2x \frac{dy}{dx} + 2y = -x^{-2}$ $= \frac{e^{-2u}}{u^2} \left(-\frac{dy}{du} + \frac{d^2y}{du^2} \right) - 2e^u \times e^{-u} \frac{dy}{du} + 2y = -e^{-2u}$	M1A1
$\frac{y}{x^{2}} - 2x \frac{dy}{dx} + 2y = -x^{-2}$ $e^{-2u} \left(-\frac{dy}{du} + \frac{d^{2}y}{du^{2}} \right) - 2e^{u} \times e^{-u} \frac{dy}{du} + 2y = -e^{-2u}$	dM1
$e^{-2u} \left(-\frac{dy}{du} + \frac{d^2y}{du^2} \right) - 2e^u \times e^{-u} \frac{dy}{du} + 2y = -e^{-2u}$	
1.N 19,000 EXECUTO EXECUTOR EX	
$\frac{dy}{dy} + 2y = e^{-2u}$	Alcso
$\frac{1}{du} + 2y = -e$	(6)
$\frac{dy}{dx}$ using chain rule here or seen later (may not be shown itly but appear in the substitution)	
t expression for $\frac{dy}{dx}$ any equivalent form (again, may not be seen substitution)	
$\frac{d^2y}{dx^2}$ using product rule (penalise lack of chain rule by the A	
ect expression for $\frac{d^2y}{dx^2}$ any equivalent form	
U.A.	
tuting in the equation to eliminate x Only u and y now Depends on	
1	tuting in the equation to eliminate x Only u and y now Depends on previous M marks. Substitution must have come from their working the given result from completely correct work.

0	ALTERNATIVE 1	
	$x = e^u \frac{dx}{du} = e^u = x$	
0	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}u} = x \frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1
0	$\frac{d^2y}{du^2} = 1\frac{dx}{du} \times \frac{dy}{dx} + x\frac{d^2y}{dx^2} \times \frac{dx}{du} = x\frac{dy}{dx} + x^2\frac{d^2y}{dx^2}$	M1A1
	$x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{du^2} - \frac{dy}{du}$	
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - \frac{\mathrm{d}y}{\mathrm{d}u}\right) - 2x \times \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}u} + 2y = -x^{-2}$	
	$\frac{d^2 y}{du^2} - 3\frac{dy}{du} + 2y = -e^{-2u}$ *	dM1A1cso (6)
M1	obtaining $\frac{dy}{du}$ using chain rule here or seen later	
A1	correct expression for $\frac{dy}{du}$ here or seen later	
М1	obtaining $\frac{d^2y}{du^2}$ using product rule (penalise lack of chain rule by the A mark)	
A1	Correct expression for $\frac{d^2y}{du^2}$ any equivalent form	
dM1A1c so	As main scheme	

ALTERNATIVE 2:	8
$u = \ln x \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}u}$	M1A1
$\frac{d^{2}y}{dx^{2}} = -\frac{1}{x^{2}}\frac{dy}{du} + \frac{1}{x}\frac{d^{2}y}{du^{2}} \times \frac{du}{dx} = -\frac{1}{x^{2}}\frac{dy}{du} + \frac{1}{x^{2}}\frac{d^{2}y}{du^{2}}$	M1A1
$x^{2} \left(-\frac{1}{x^{2}} \frac{dy}{du} + \frac{1}{x^{2}} \frac{d^{2}y}{du^{2}} \right) - 2x \times \frac{1}{x} \frac{dy}{du} + 2y = -x^{-2}$	
$\frac{d^2y}{du^2} - 3\frac{dy}{du} + 2y = -e^{-2u}$ * Depends on both previous M mar	ks dM1A1cso
	0

	There are also other solutions which will appear, either starting from equation II and obtaining equation I, or mixing letters x, y and u until the final stage.	
M1	obtaining a first derivative with chain rule	
A1	correct first derivative	
M1	obtaining a second derivative with product rule (Chain rule errors are penalised through A marks)	
A1	correct second derivative with 2 or 3 variables present	
dM1	Either substitute in equation I or substitute in equation II according to method chosen AND obtain an equation with only y and u (following sub in eqn I) or with only x and y (following sub in eqn II)	
A1cso	Obtaining the required result from completely correct work	

Question Number	Scheme		Notes	Marks
(b)	$m^2 - 3m + 2 = 0 \Rightarrow m = 1, 2$		M1: Forms AE and attempts to solve to $m =$ or values seen in CF A1: Both values correct. May only be seen in the CF	MIAI
	$(CF =) Ae^{u} + Be^{2u}$		CF correct oe can use any (single) variable	Al
	$y = \lambda e^{-2u}$	81		F.7:
	$\frac{\mathrm{d}y}{\mathrm{d}u} = -2\lambda \mathrm{e}^{-2u}$ $\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} = 4\lambda \mathrm{e}^{-2u}$	PI of form $y = \lambda e^{-2u}$ (or $y = \lambda u e^{-2u}$ if $m = -2$ is a solution of the aux equation) and differentiate PI twice wrt u . Allow with x instead of u		MI
	$4\lambda e^{-2u} + 6\lambda e^{-2u} + 2\lambda e^{-2u} = -e^{-2u}$ $\Rightarrow \lambda = -\frac{1}{12}$	и	dM1 substitute in the equation to obtain value for λ Dependent on the second M1 A1 $\lambda = -\frac{1}{12}$	dM1A1
	$y = Ae^{u} + Be^{2u} - \frac{1}{12}e^{-2u}$		A complete solution, follow through their CF and PI. Must have $y = a$ function of u Allow recovery of incorrect variables.	Blft
				(7
(c)	$y = Ax + Bx^{2} - \frac{1}{12x^{2}}$ Or $y = Ae^{\ln x} + Be^{2\ln x} - \frac{1}{12e^{2\ln x}}$		Reverse the substitution to obtain a correct expression for y in terms of x No ft here $\frac{1}{12x^2}$ or $\frac{1}{12}x^{-2}$ Must start $y - \dots$	Bl
				(1
				Total 14