If you are studying logarithms it is reasonably safe to assume that you’re already reasonably familiar with index rules; those shortcuts that allow for swift calculation of exponents when dealing with equal bases. The log laws are really just a rearrangement of these.
First, multiplying. Since when you multiply terms with the same base you add the indices, the log of a product is equal to the sum of the logs of the factors of that product. This is best demonstrated starting with the index rule and working through an example.
Index / log law for multiplication / addition
Second, division. As the inverse of multiplication this one is now hopefully easy to spot: subtracting the parts. The log of a quotient is equal to the difference between the logs of the dividend and the divisor (numerator and denominator).
Index / log law for division / subtraction
Using this rule for division it follows that we should be able to find the value of a logarithm of 1. As any value divided by itself is 1, choosing a value expressed in index form allows us to apply the previous rule.
The log of 1 in any base is 0
Terms with indices raised to a power are an extension of the multiplication of indices already described. This approach can be applied to the addition of logarithms:
Powers in logarithms